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There  is  an  increasing  need  to describe  cyanobacteria  blooms  since  some  cyanobacteria  produce  toxins,
termed  cyanotoxins.  These  latter  can  be  toxic  and  dangerous  to humans  as  well  as  other  animals  and
life in  general.  It must  be  remarked  that  the  cyanobacteria  are  reproduced  explosively  under  certain
conditions.  This  results  in  algae  blooms,  which  can  become  harmful  to other  species  if the  cyanobacteria
involved  produce  cyanotoxins.  In this  research  work,  the  evolution  of  cyanotoxins  in  Trasona  reservoir
(Principality  of  Asturias,  Northern  Spain)  was  studied  with  success  using  the  data  mining  methodology
tatistical learning techniques
yanobacteria
yanotoxins
ultivariate adaptive regression splines

MARS)

based  on  multivariate  adaptive  regression  splines  (MARS)  technique.  The  results  of  the  present  study
are  two-fold.  On  one  hand,  the  importance  of the  different  kind  of cyanobacteria  over  the  presence  of
cyanotoxins  in  the  reservoir  is presented  through  the  MARS  model  and  on  the  other  hand  a predictive
model  able  to  forecast  the  possible  presence  of  cyanotoxins  in a  short  term  was  obtained.  The  agreement
of  the  MARS  model  with  experimental  data  confirmed  the  good  performance  of  the  same  one.  Finally,
conclusions  of  this  innovative  research  are  exposed.
. Introduction

Cyanobacteria also known as blue-green algae, blue-green bac-
eria, and cyanophyta is a phylum of bacteria that obtain their
nergy through photosynthesis. Cyanobacteria can be found in
lmost every conceivable environment: in oceans, lakes and rivers
s well as on land. Even they flourish in Arctic and Antarctic
akes [1],  hotsprings and wastewater treatments plants. Aquatic
yanobacteria is probably best known for the extensive and highly
isible blooms that can form in both freshwater and the marine
nvironment. The association of toxicity with such blooms has fre-
uently led to the closure of recreational waters when blooms are
bserved. Some cyanobacteria produce toxins, called cyanotoxins
2], and in freshwater ecosystems are the most common cause of
utrophication. The blooms are not always green [3].  They can be
lue, and some cyanobacteria species are coloured brownish-red.

he water can become malodorous when the cyanobacteria in the
loom die.

∗ Corresponding author. Tel.: +34 985 103417; fax: +34 985 103354.
E-mail address: lato@orion.ciencias.uniovi.es (P.J. Garcia Nieto).
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Cyanotoxins are an important environmental problems in reser-
voirs [4].  Water is never perfectly clean and polluted water is also
a continuing threat to human health and welfare [5].  The toxins
include potent neurotoxins, hepatotoxins, cytotoxins, and endotox-
ins [6]. Most reported incidents of poisoning by microalgal toxins
have occurred in freshwater environments, and they are becoming
more common and widespread [7].

Generally these blooms are harmless, but if not they are called
harmful algal blooms (HABs) [8].  HABs can contain toxins which
result in fish kill and can also be fatal to humans [9].

The aim of this research is to construct a multivariate adaptive
regression splines (MARS) model to identify spatial cyanotoxins
in waterways in the Trasona reservoir (Principality of Asturias,
Northern Spain) (see Fig. 1(a) and (b)). Multivariate adaptive regres-
sion splines (MARS) technique is a form of regression analysis
introduced by Friedman in 1991 [10–13].  It is a non-parametric
regression technique and can be seen as an extension of linear
models that automatically models non-linearities and interactions
as those analyzed in this innovative research work successfully.

The Trasona reservoir, which was initially destined to the industrial
supply, is complemented at present with a recreational utilization
as a high performance training centre of canoeing. It is an eutrophic
ecosystem, which has been characterized for cyanobacteria

dx.doi.org/10.1016/j.jhazmat.2011.08.061
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:lato@orion.ciencias.uniovi.es
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Fig. 1. (a) Aerial photograph of the city of Avilés (Northern Spain) (2) and Trasona

utcrops in certain periods, which sometimes has produced vari-
ble concentrations of cyanotoxinas, mainly mycrocistins.

This innovative research work is structured as follows. In the
rst place, the necessary materials and methods are described to
arry out this study. Next the obtained results are shown and dis-
ussed. Finally, the main conclusions drawn from the results are
xposed.

. Materials and methods

.1. Experimental data set

The data used for the MARS analysis were collected over five
ears (2006–2010) from lots of samples in Trasona reservoir and the
otal number of data processed was about five hundred and eleven
alues. The supplementary site-specific experimental data asso-
iated with this article can be found at the following online link:

ttp://dl.dropbox.com/u/36679320/Trasona reservoir data.xls.
he information is quantitative on the abundance of phytoplank-
on species. Specifically, this reservoir was sampled several times

 month from January 1, 2006 to December 31, 2010, following
voir (1); and (b) an aerial photograph of Trasona reservoir in great detail (lower).

the sampling protocols for lakes and reservoirs of the Spanish
Ministry of Environment and Rural and Marine Affairs, which
are consistent with the guidelines established by the European
Union and international agencies dealing with these issues [4–9].
In practice, a single point of sampling is taken into account in
the place of greater depth of the reservoir, which is determined
with a depth gauge [9].  The samples were taken with a Niskin
hydrographic bottle (see Fig. 2(a)) at different depths in the zone
corresponding to the depth of the water in the reservoir that is
exposed to sufficient sunlight for photosynthesis to occur called
the euphotic zone [5].  This zone is determined from the Secchi
depth which is the depth at which the pattern on the Secchi disk
(see Fig. 2(b)) is no longer visible and it is taken as a measure of
the transparency of the water in lakes, reservoirs and oceans. The
values of phytoplankton and concentrations of cyanotoxins and
chlorophyll were determined from a sample composed of five
homogeneous subsamples obtained with the hydrographic bottle

at various equidistant depths in the euphotic zone [14–16].

The main goal of this research work is to obtain the dependence
relationship of the cyanotoxins (output variable) of the Trasona
reservoir as a function of the following input variables [17]:

http://dl.dropbox.com/u/36679320/Trasona_reservoir_data.xls
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ig. 2. (a) A Niskin hydrographic bottle about to be lowered into the water; and (b)
ifferent kinds of Secchi disks.

Microcystis aeruginosa:  Is a type of harmful blue-green algae
which is also referred to as colonial cyanobacteria.
Woronichinia naegeliana:  Is a kind of cyanobacteria present in
waters of a lower trophic status.
Other cyanobacteria:  They represent the rest of cyanobacteria
excluding the two previous ones.
Diatoms: Are a major group of algae, and are one of the most
common types of phytoplankton.
Chrysophytes: Are small flagellates that are a yellowish brown
colour. They can also be found singly or in a colony.
Chlorophytes: Refer to a highly paraphyletic group of all the green
algae within the green plants.
Other species of the phytoplankton:  They represent the rest of the
phytoplankton excluding all the previous ones.

All the input variables are measured in number of cells per
illiliter and the output variable (cyanotoxins) in micrograms

er liter. To fix ideas, in this research work, physical–chemical
arameters normally used in limnological studies have been mea-
ured [7].  Analyses of chlorophyll have been carried out to study
f the phytoplankton. Fig. 3(a) shows the evolution of chloro-
hyll concentration and cyanobacteria cell number per milliliter

n the Trasona reservoir from January of 2006 to December of
010. Higher levels of both variables are observed at certain peri-
ds of the years 2006–2008, which are significantly greater than

he values obtained in the years 2009 and 2010. The peaks in
ig. 3(a) correspond to the cyanobacteria blooms: summer and
all of those years. However, there are no cyanobacteria blooms in
ears 2009 and 2010. Fig. 3(b) shows the evolution of cyanotoxins
ous Materials 195 (2011) 414– 421

concentration and cyanobacteria cell number per milliliter in the
Trasona reservoir from January of 2006 to December of 2010. Simi-
larly, the peaks in Fig. 3(b) correspond to the cyanobacteria blooms
and large concentrations of cyanotoxins.

Specifically, cyanobacteria cell number per milliliter was less
than 50,000 and cyanotoxins concentration was always zero in
2009 and 2010.

In fact, the Trasona reservoir is an eutrophic ecosystem [15]
which has been characterized for the presence of cyanobacteria.
These last ones sometimes have produced variable concentrations
of cyanotoxins, mainly microcystins [16]. Microcystins are cyclic
nonribosomal peptides produced by cyanobacteria. They are cyan-
otoxins and can be very toxic for plants and animals including
humans [17]. Their hepatotoxicity may  cause serious damage to the
liver [18]. Once the problem has been identified, civil works have
been carried out in order to diminish the nutrients contributions to
the reservoir although a part of spillages still reaches the same one.
The guideline values for safe recreational water quality raises alert
level 2 [19] with values greater than 100,000 cells per milliliter and
a microcystin concentration greater than 20.0 �g/l (see Fig. 3(a) and
(b)).

The inventories of cells were taken through an inverted micro-
scope on settled samples. The cyanotoxins have been analyzed
by means of the high-performance liquid chromatography (HPLC)
technique [20]. High-performance liquid chromatography (or high-
pressure liquid chromatography) is a chromatographic technique
that can separate a mixture of compounds and is used in biochem-
istry and analytical chemistry to identify, quantify and purify the
individual components of the mixture. With the HPLC technique, a
pump (rather than gravity) provides the higher pressure required
to move the mobile phase and analyte through the densely packed
column. The increased density arises from smaller particle sizes.
This allows for a better separation on columns of shorter length
when compared to ordinary column chromatography.

The Trasona reservoir is located near the industrial city of Avilés
(Principality of Asturias, Northern Spain). Practically chained to the
Trasona reservoir, it is possible to observe a wetland created arti-
ficially in order to shelter one changeable aquatic avifauna. This
lagoon is able to store approximately 50,000 m3 of water and the
almost constant level of the water sheet of this lagoon allows the
building of nests of different species of birds. Both the Trasona
reservoir and the wetland belong to a ZEPA (zone of special pro-
tection for the birds) area [21–23].

2.2. Multivariate adaptive regression splines (MARS) method

Multivariate adaptive regression splines (MARS) is a multivari-
ate nonparametric classification/regression technique introduced
by Friedman [10–13,24,25]. The theoretical model that is explained
below has already been presented by the authors in previous
researches [26,27].  In spite of this fact and due to its interest for
the reader in order to achieve a full understanding of the research
that is presented in this paper. Its main purpose is to predict the
values of a continuous dependent variable, �y(n × 1), from a set of
independent explanatory variables, �X(n × p). The MARS model can
be represented as:

�y = f (�X) + �e (1)

where f is a weighted sum of basis functions that depend on �X and
�e is an error vector of dimension (n × 1).

MARS does not require any a priori assumptions about the
underlying functional relationship between dependent and inde-

pendent variables. Instead, this relation is uncovered from a set
of coefficients and piecewise polynomials of degree q (basis func-
tions) that are entirely “driven” from the regression data (�X, �y). The
MARS regression model is constructed by fitting basis functions to
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ig. 3. (a) Evolution of chlorophyll concentration and cyanobacteria cell number per
f  2010; and (b) evolution of cyanotoxins concentration and cyanobacteria cell num
ecember of 2010.

istinct intervals of the independent variables. Generally, piece-
ise polynomials, also called splines, have pieces smoothly

onnected together. In MARS terminology, the joining points of the
olynomials are called knots, nodes or breakdown points. These
ill be denoted by the small letter t. For a spline of degree q each

egment is a polynomial function. MARS uses two-sided truncated
ower functions as spline basis functions, described by the follow-

ng equations [10–13]:

−(x − t)]q
+ =

{
(t − x)q if x < t

0 otherwise
(2)

+(x − t)]q
+ =

{
(t − x)q if x ≥ t

0 otherwise
(3)
here q(≥ 0) is the power to which the splines are raised and which
etermines the degree of smoothness of the resultant function esti-
ate. When q = 1, which is the case in this study, only simple linear

plines are considered.
iter as a function of time in the Trasona reservoir from January of 2006 to December
er milliliter as a function of time in the Trasona reservoir from January of 2006 to

The MARS model of a dependent variable �y with M basis func-
tions (terms) can be written as [24–27]:

�̂y = f̂M(�x) = c0 +
M∑

m=1

cmBm(�x) (4)

where �̂y is the dependent variable predicted by the MARS model,
c0 is a constant, Bm(�x) is the mth basis function, which may be a
single spline basis functions, and cm is the coefficient of the mth
basis functions.

Both the variables to be introduced into the model and the knot
positions for each individual variable have to be optimized. For a
data set �X containing n objects and p explanatory variables, there
are N = n × p pairs of spline basis functions, given by Eqs. (2) and (3),
with knot locations xij (i = 1, 2, . . .,  n ; j = 1, 2, . . .,  p).

A two-step procedure is followed to construct the final model.
First, in order to select the consecutive pairs of basis functions

of the model, a two-at-a-time forward stepwise procedure is
implemented [25,28,29].  This forward stepwise selection of basis
function leads to a very complex and overfitted model. Such a
model, although it fits the data well, has poor predictive abilities
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Table 1
Set of input variables used in this study.

Input variables (cell/ml) Name of the variable

Microcystis aeruginosa Microcystis aeruginosa
Woronichinia naegeliana Woronichinia naegeliana
Other cyanobacteria Other species Cyanobacteria
Diatoms Diatoms
Chrysophytes Chrysophytes
Chlorophytes Chlorophytes
Other species of the phytoplankton Other phyto
Microcystis aeruginosa × Woronichinia Microcys × Worochinia
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Table 3
Evaluation of the importance of the variables that form the model according to
criteria Nsubsets, GCV and RSS.

Variable Nsubsets GCV RSS

Microcys × Worochinia 15 100 100
Other species Cyanobacteria 13 51.25753 52.41336

T
L

naegeliana (synergistic interaction
variable)

or new objects. To improve the prediction, the redundant basis
unctions are removed one at a time using a backward stepwise
rocedure. To determine which basis functions should be included

n the model, MARS utilizes the generalized cross-validation (GCV)
10–13,25,30,31]. In this way, the GCV is the mean squared residual
rror divided by a penalty dependent on the model complexity. The
CV criterion is defined in the following way [10–13,25]:

CV(M) = (1/n)
∑n

i=1(yi − f̂M(�xi))
2

(1 − C(M)/n)2
(5)

here C(M) is a complexity penalty that increases with the number
f basis functions in the model and which is defined as [10–13]:

(M) = (M + 1) + dM (6)

here M is the number of basis functions in Eq. (4),  and the param-
ter d is a penalty for each basis function included into the model.
t can also be regarded as a smoothing parameter. Large values of d
ead to fewer basis functions and therefore smoother function esti-

ates. For more details about the selection of the d parameter, see
he references [10–13,25].  In our studies, the parameter d equals 2,
nd the maximum interaction level of the spline basis functions is
estricted to 3.

.3. The importance of the variables in the MARS model

Once the MARS model is constructed, it is possible to evaluate
he importance of the explanatory variables used to construct the
asis functions. Establishing predictor importance is in general a

omplex problem which in general requires the use of more than
ne criterion. In order to obtain reliable results, it is convenient to
se the GCV parameter explained before together with the param-
ters Nsubsets (criterion counts the number of model subsets in

able 2
ist of basis functions of the MARS model and their coefficients ci .

Bi Definition 

B1 1
B2 h(0,Microcystis aeruginosa-135,000) 

B3 h(0,135,000-Microcystis aeruginosa) 

B4 h(0,Microcys × Worochinia-16,900) 

B5 h(0,16,900-Microcys × Worochinia) 

B6 h(0,Microcystis aeruginosa-135,000) × h(0,Woronichini
B7 h(0,Microcystis aeruginosa-135,000) × h(0,110,000-Wor
B8 h(0,Microcystis aeruginosa-135,000) × h(0,Woronichini
B9 h(0,Microcystis aeruginosa-70,000) × h(0,16,900-Microc
B10 h(0,70,000-Microcystis aeruginosa) × h(0,16,900-Microc
B11 h(0,Microcystis aeruginosa-140,000) × h(0,Microcys × W
B12 h(0,Woronichinia naegeliana-130,000) × h(0,Microcys ×
B13 h(0,130,000-Woronichinia naegeliana) × h(0,Microcys ×
B14 h(0,Other species Cyanobacteria-39,617) × h(0,Microcys
B15 h(0,Other species Cyanobacteria-60,000) × h(0,Microcys
B16 h(0,60,000-Other species Cyanobacteria) × h(0,Microcys
Microcystis aeruginosa 12 23.66865 24.81192
Woronichinia naegeliana 10 12.10512 13.28461

which each variable is included) and the residual sum of squares
RSS [32].

3. Analysis of results and discussion

The list of input variables taken into account is the research work
shown in Table 1 [33–35].  As it can be observed one of the variables
is formed by the product of the variable M.  aeruginosa multi-
plied by the variable W.  naegeliana due to the coexistence of these
two  species of cyanobacteria in order to reproduce their dynam-
ics without interference from external factor. This mathematical
formulation adds a multiplicative additional term to account for
the two  species’ interactions according to a more realistic math-
ematical modelling in Biology [36,37].  This kind of interaction
(synergistic interaction) will be explained later in more detail. All
the input variables are measured in number of cells per milliliter
and the output variable (cyanotoxins) in micrograms per liter. The
total number of prediction variables used to build the MARS model
was  8.

In this work, a second-order MARS model has been used, so that
the basis functions of the model consist of linear and second-order
splines and the maximum number of terms was  not limited (no
pruning). The results of the MARS model computed using all the
available data observations is shown in Table 2. Table 2 shows a list
of the 16 main basis functions of the MARS models and their coeffi-
cients. Please note that h(x) = x if x > 0 and h(x) = 0 if x ≤ 0. Therefore,
the MARS model is a form of non-parametric regression technique
and can be seen as an extension of linear models that automatically
models non-linearities and interactions as a weighted sum of basis
functions called hinge functions [10–13].  The predicted response or
cyanotoxins presence is now a better fit to the original values since
the MARS model has automatically produced a kink in the predicted
dependent variable to take into account non-linearities. A graphical
representation of the terms that constitute the model can be seen

in Fig. 4.

In this research work, the fitted MARS model has a coefficient of
determination R2 equal to 0.84 and a correlation coefficient equal
to 0.91. These results indicate an important goodness of fit, that is

ci

1.8 × 103

0.042
0.025
1.9
0.011

a naegeliana-110,000) −5.2 × 10−6

onichinia naegeliana) −8.6 × 10−7

a naegeliana-120,000) 1.1 × 10−5

ys × Worochinia) 3.3 × 10−6

ys × Worochinia) −1.5 × 10−6

orochinia-16,900) 2.5 × 10−5

 Worochinia-10,377) −7.4 × 10−6

 Worochinia-10,377) −7.9 × 10−6

 × Worochinia-10,377) 2.6 × 10−5

 × Worochinia-10,377) 1.4 × 10−5

 × Worochinia-10,377) 2.2 × 10−5
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Fig. 4. Graphical representation of the terms that constitute the MARS model: (a) first order term of the variable Microcystis aeruginosa;  (b) first order term of the product of the
variables Microcystis aeruginosa and Woronichinia naegeliana; (c) second order term of the variables Microcystis aeruginosa and the synergistic interaction variable Microcystis
aeruginosa Woronichinia naegeliana; (d) second order term of the variables synergistic interaction variable Microcystis aeruginosa Woronichinia naegeliana and Woronichinia
naegeliana;  (e) second order term of the variables synergistic interaction variable Microcystis aeruginosa Woronichinia naegeliana and other species of cyanobacteria; and (f)
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econd  order term of the variables Woronichinia naegeliana and Microcystis aerugino

o say, a good agreement is obtained between our model and the
bserved data. It must be taken into account that the goodness of
t should not be considered as a proof of the predictive ability of
he MARS model.

According to the results shown in Table 3, the most important
ariables for the prediction of the cyanotoxins (output vari-
ble) are as follows: M.  aeruginosa multiplied by W.  naegeliana
Microcys × Worochinia), Other species of cyanobacteria, the

icrocystis aeruginosa and finally the Woronichinia naegeliana on
ts own.

In order to guarantee the ability prediction of the MARS model
n exahustive cross-validation algorithm is used. The referred algo-
ithm consists on the creation of 511 different MARS model (one
odel for each observation). Each of this model was  trained using

ll the data except the observarion for which it was created as
he validation was performed predicting its corresponding output
alue. The results obtained by means of this procedure are shown
n Fig. 5.

The main finding of this study is the interaction between

nput variables M.  aeruginosa and W.  naegeliana not considered in
revious works [38–40] and it is the result of the exhaustive work
arried out on the Trasona reservoir for five years and presented
ere. This led to the consideration of a new input variable equal to
the product of the concentrations of the two  above input variables
in addition to other input variables empirically measured in
Trasona reservoir. The consideration of this interaction is known
as synergy or synergistic behavior and it has not been considered in
previous research works.

It is well known that M. aeruginosa is potentially toxic and pro-
duces a type of toxin known as microcystin. Up to now, there is no
evidence of the toxicity of the W.  naegeliana in Spain and there is
only a partial evidence of its toxicity outside Spain [38]. This syn-
ergistic behavior is the result of joint action of two  or more causes,
but characterized by having a greater effect than that resulting from
the sum of these causes, that is to say, the production of cyanotox-
ins from M.  aeruginosa can be increased by combined presence of
both species: M.  aeruginosa and W.  naegeliana.  Synergy has been
advanced as a hypothesis on how complex systems operate. Envi-
ronmental systems may  react in a nonlinear way to perturbations,
so that the outcome may  be greater than the sum of the individual
component alterations. Synergistic responses are a complicating
factor in environmental modelling.
Finally, this research work was able to estimate the presence
of cyanobacteria blooms from 2006 to 2010 in agreement to the
actual cyanobacteria blooms observed with great accurateness and
success (see Fig. 5).
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Fig. 5. Comparison between the three blooms of cyanobacteria observed 

. Conclusions

In the first place, the main purpose of this research was  to build
 cyanotoxin diagnostic model by using MARS technique in Tra-
ona reservoir with the site-specific experimental data and this
oal was achieved in this work successfully. Future researches may
im at collecting more important physical, chemical and biological
ariables that will increase the calculation accuracies.

Secondly, the predicted results for the MARS model have
emonstrated to be consistent with the observed actual cyanobac-
eria blooms history from 2006 to 2010. In this way, this original
nd innovative methodology can be applied to other reservoirs with
imilar or different sources of pollutants, but it is always necessary
o take into account the specificities of each location.

Finally, one of the main findings of this study is the existence
f synergistic behavior between two cyanobacteria: specifically, M.
eruginosa and W.  naegeliana.  Synergy, in general, may  be defined
s two or more things functioning together to produce a result not
ndependently obtainable. This performance is the result of joint
ction of the two cyanobacteria in the production of cyanotoxins:
he efficiency can be increased by combined action of both species.
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